Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Endocrinology ; 165(4)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38470466

RESUMO

The neuroendocrine system that controls the preovulatory surge of gonadotropin-releasing hormone (GnRH)/luteinizing hormone (LH), which triggers ovulation in female mammals, is sexually differentiated in rodents. A transient increase in circulating testosterone levels in male rats within a few hours of birth is primarily responsible for the defeminization of anteroventral periventricular nucleus (AVPV) kisspeptin neurons, which are critical regulators of the GnRH/LH surge. The present study aimed to determine whether neonatal estradiol-17ß (E2) converted from testosterone by aromatase primarily causes the defeminization of AVPV kisspeptin neurons and the surge of GnRH/LH in male rodents. The results of the present study showed that the neonatal administration of letrozole (LET), a nonsteroidal aromatase inhibitor, within 2 hours of birth rescued AVPV Kiss1 expression and the LH surge in adult male rats, while the neonatal administration of testosterone propionate (TP) irreversibly attenuated AVPV Kiss1 expression and the LH surge in adult female rats. Furthermore, the neonatal LET-treated Kiss1-Cre-activated tdTomato reporter males exhibited a comparable number of AVPV Kiss1-Cre-activated tdTomato-expressing cells to that of vehicle-treated female rats, while neonatal TP-treated females showed fewer AVPV Kiss1-Cre-activated tdTomato-expressing cells than vehicle-treated females. Moreover, neonatal TP administration significantly decreased the number of arcuate Kiss1-expressing and Kiss1-Cre-activated tdTomato-positive cells and suppressed LH pulses in adult gonadectomized female rats; however, neonatal LET administration failed to affect them. These results suggest that E2 converted from neonatal testosterone is primarily responsible for the defeminization of AVPV kisspeptin neurons and the subsequent GnRH/LH surge generation in male rats.


Assuntos
Aromatase , Kisspeptinas , 60598 , Animais , Feminino , Masculino , Ratos , Aromatase/metabolismo , Estradiol/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo Anterior/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo , Hormônio Luteinizante/metabolismo , Mamíferos/metabolismo , Neurônios/metabolismo , Testosterona/metabolismo
2.
J Reprod Dev ; 70(1): 49-54, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38008463

RESUMO

Pre-ovulatory follicles are cooler than the neighboring reproductive organs in cows. Thus, measuring the temperature of reproductive organs could be a useful method for predicting estrus and ovulation in cows, and the establishment of a non-invasive technique is required. In this study, we used infrared thermography (IRT) to measure ocular surface temperature as a potential surrogate for reproductive organ temperature. Five Japanese Black cows with synchronized estrus were subjected to temperature measurements in five regions of the ocular surface, including the nasal conjunctiva, nasal limbus, center cornea, temporal limbus, and temporal conjunctiva, twice a day (0800 h and 1600 h) during the experimental period. The temperatures in the five regions significantly declined in cows from estrus to ovulation. To the best of our knowledge, this study is the first to use IRT to show a temperature decrease in the ocular surface along with estrus to ovulation in Japanese Black cows.


Assuntos
Ovulação , Termografia , Feminino , Bovinos , Animais , Temperatura , Termografia/veterinária , Termografia/métodos , Temperatura Corporal , Estro , Sincronização do Estro
3.
Sci Rep ; 13(1): 20495, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993510

RESUMO

The gonadotropin-releasing hormone (GnRH) pulse and surge are considered to be generated by arcuate kisspeptin/neurokinin B/dynorphin A (KNDy) neurons and anteroventral periventricular nucleus (AVPV) kisspeptin neurons, respectively, in female rodents. The majority of KNDy and AVPV kisspeptin neurons express κ-opioid receptors (KORs, encoded by Oprk1) in female rodents. Thus, this study aimed to investigate the effect of a conditional Oprk1-dependent Kiss1 deletion in kisspeptin neurons on the luteinizing hormone (LH) pulse/surge and fertility using Kiss1-floxed/Oprk1-Cre rats, in which Kiss1 was deleted in cells expressing or once expressed the Oprk1/Cre. The Kiss1-floxed/Oprk1-Cre female rats, with Kiss1 deleted in a majority of KNDy neurons, showed normal puberty while having a one-day longer estrous cycle and fewer pups than Kiss1-floxed controls. Notably, ovariectomized (OVX) Kiss1-floxed/Oprk1-Cre rats showed profound disruption of LH pulses in the presence of a diestrous level of estrogen but showed apparent LH pulses without estrogen treatment. Furthermore, Kiss1-floxed/Oprk1-Cre rats, with Kiss1 deleted in approximately half of AVPV kisspeptin neurons, showed a lower peak of the estrogen-induced LH surge than controls. These results suggest that arcuate and AVPV kisspeptin neurons expressing or having expressed Oprk1 have a role in maintaining normal GnRH pulse and surge generation, the normal length of the estrous cycle, and the normal offspring number in female rats.


Assuntos
Kisspeptinas , Hormônio Luteinizante , Ratos , Feminino , Animais , Kisspeptinas/metabolismo , Hormônio Luteinizante/farmacologia , Estrogênios/farmacologia , Hormônio Liberador de Gonadotropina/metabolismo , Neurocinina B/genética , Neurocinina B/metabolismo , Dinorfinas/metabolismo , Neurônios/metabolismo , Núcleo Arqueado do Hipotálamo/metabolismo
4.
J Reprod Dev ; 69(5): 227-238, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37518187

RESUMO

Hypothalamic kisspeptin neurons are master regulators of mammalian reproduction via direct stimulation of gonadotropin-releasing hormone and consequent gonadotropin release. Here, we generated novel Kiss1 (kisspeptin gene)-Cre rats and investigated the developmental changes and sex differences in visualized Kiss1 neurons of Kiss1-Cre-activated tdTomato reporter rats. First, we validated Kiss1-Cre rats by generating Kiss1-expressing cell-specific Kiss1 knockout (Kiss1-KpKO) rats, which were obtained by crossing the current Kiss1-Cre rats with Kiss1-floxed rats. The resulting male Kiss1-KpKO rats lacked Kiss1 expression in the brain and exhibited hypogonadotropic hypogonadism, similar to the hypogonadal phenotype of global Kiss1 KO rats. Histological analysis of Kiss1 neurons in Kiss1-Cre-activated tdTomato reporter rats revealed that tdTomato signals in the anteroventral periventricular nucleus (AVPV) and arcuate nucleus (ARC) were not affected by estrogen, and that tdTomato signals in the ARC, AVPV, and medial amygdala (MeA) were sexually dimorphic. Notably, neonatal AVPV tdTomato signals were detected only in males, but a larger number of tdTomato-expressing cells were detected in the AVPV and ARC, and a smaller number of cells in the MeA was detected in females than in males at postpuberty. These findings suggest that Kiss1-visualized rats can be used to examine the effect of estrogen feedback mechanisms on Kiss1 expression in the AVPV and ARC. Moreover, the Kiss1-Cre and Kiss1-visualized rats could be valuable tools for further detailed analyses of sexual differentiation in the brain and the physiological role of kisspeptin neurons across the brain in rats.


Assuntos
Kisspeptinas , Caracteres Sexuais , Ratos , Animais , Feminino , Masculino , Kisspeptinas/metabolismo , Núcleo Arqueado do Hipotálamo/metabolismo , Estrogênios/metabolismo , Neurônios/metabolismo , Mamíferos/metabolismo
5.
J Reprod Dev ; 69(4): 192-197, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37331801

RESUMO

Gonadal function is often suppressed during lactation in mammals including rodents, ruminants, and primates. This suppression is thought to be mostly due to the inhibition of the tonic (pulsatile) release of gonadotropin-releasing hormone (GnRH) and consequent gonadotropin. Accumulating evidence suggests that kisspeptin neurons in the arcuate nucleus (ARC) play a critical role in the regulation of pulsatile GnRH/gonadotropin release, and kisspeptin mRNA (Kiss1) and/or kisspeptin expression in the ARC are strongly suppressed by the suckling stimuli in lactating rats. This study aimed to examine whether the central enkephalin-δ-opioid receptor (DOR) signaling mediates the suckling-induced suppression of luteinizing hormone (LH) release in lactating rats. Central administration of a selective DOR antagonist increased the mean plasma LH levels and baseline of LH pulses in ovariectomized lactating mother rats compared to vehicle-injected control dams on day 8 of lactation without affecting the number of Kiss1-expressing cells and the intensity of Kiss1 mRNA signals in the ARC. Furthermore, the suckling stimuli significantly increased the number of enkephalin mRNA (Penk)-expressing cells and the intensity of Penk mRNA signals in the ARC compared to non-lactating control rats. Collectively, these results suggest that central DOR signaling, at least in part, mediates the suppression of LH release induced by suckling stimuli in lactating rats via indirect and/or direct inhibition of ARC kisspeptin neurons.


Assuntos
Kisspeptinas , Receptores Opioides delta , Feminino , Ratos , Animais , Kisspeptinas/genética , Lactação , Hormônio Luteinizante , Hormônio Liberador de Gonadotropina , Mamíferos
6.
Peptides ; 166: 171026, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37230188

RESUMO

Lactational anestrus, characterized by the suppression of pulsatile gonadotropin-releasing hormone (GnRH)/luteinizing hormone (LH) release, would be a strategic adaptation to ensure survival by avoiding pregnancy during lactation in mammals. In the present article, we first provide a current understanding of the central regulation of reproduction in mammals, i.e., a fundamental role of arcuate kisspeptin neurons in mammalian reproduction by driving GnRH/LH pulses. Second, we discuss the central mechanism inhibiting arcuate Kiss1 (encoding kisspeptin) expression and GnRH/LH pulses during lactation with a focus on suckling stimulus, negative energy balance due to milk production, and the role of circulating estrogen in rats. We also discuss upper regulators that control arcuate kisspeptin neurons in rats during the early and late lactation periods based on the findings obtained by a lactating rat model. Finally, we discuss potential reproductive technology for the improvement of reproductive performance in milking cows.


Assuntos
Kisspeptinas , Lactação , Animais , Bovinos , Feminino , Gravidez , Ratos , Anestro , Núcleo Arqueado do Hipotálamo/metabolismo , Hormônio Liberador de Gonadotropina/genética , Kisspeptinas/genética , Kisspeptinas/metabolismo , Lactação/genética , Lactação/fisiologia , Hormônio Luteinizante/metabolismo , Mamíferos
7.
J Neuroendocrinol ; 35(9): e13285, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37232103

RESUMO

Uncovering the central mechanism underlying mammalian reproduction is warranted to develop new therapeutic approaches for reproductive disorders in humans and domestic animals. The present study focused on the role of arcuate kisspeptin neurones (also known as KNDy neurones) as an intrinsic gonadotropin-releasing hormone (GnRH) pulse generator, which plays a fundamental role in mammalian reproduction via the stimulation of pituitary gonadotropin synthesis and release and thereby in gametogenesis and steroidogenesis in the gonads of mammals. We also discuss the mechanism that inhibits pulsatile GnRH/gonadotropin release under a negative energy balance, considering that reproductive disorders often occur during malnutrition in humans and livestock.


Assuntos
Dinorfinas , Hormônio Liberador de Gonadotropina , Animais , Humanos , Hormônio Liberador de Gonadotropina/metabolismo , Dinorfinas/metabolismo , Neurocinina B/metabolismo , Reprodução/fisiologia , Neurônios/metabolismo , Kisspeptinas/metabolismo , Núcleo Arqueado do Hipotálamo/metabolismo , Mamíferos
8.
J Neurosci ; 43(12): 2140-2152, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36813577

RESUMO

Ovulation disorders are a serious problem for humans and livestock. In female rodents, kisspeptin neurons in the anteroventral periventricular nucleus (AVPV) are responsible for generating a luteinizing hormone (LH) surge and consequent ovulation. Here, we report that adenosine 5-triphosphate (ATP), a purinergic receptor ligand, is a possible neurotransmitter that stimulates AVPV kisspeptin neurons to induce an LH surge and consequent ovulation in rodents. Administration of an ATP receptor antagonist (PPADS) into the AVPV blocked the LH surge in ovariectomized (OVX) rats treated with a proestrous level of estrogen (OVX + high E2) and significantly reduced the ovulation rate in proestrous ovary-intact rats. AVPV ATP administration induced a surge-like LH increase in OVX + high E2 rats in the morning. Importantly, AVPV ATP administration could not induce the LH increase in Kiss1 KO rats. Furthermore, ATP significantly increased intracellular Ca2+ levels in immortalized kisspeptin neuronal cell line, and coadministration of PPADS blocked the ATP-induced Ca2+ increase. Histologic analysis revealed that the proestrous level of estrogen significantly increased the number of P2X2 receptor (an ATP receptor)-immunopositive AVPV kisspeptin neurons visualized by tdTomato in Kiss1-tdTomato rats. The proestrous level of estrogen significantly increased varicosity-like vesicular nucleotide transporter (a purinergic marker)-immunopositive fibers projecting to the vicinity of AVPV kisspeptin neurons. Furthermore, we found that some hindbrain vesicular nucleotide transporter-positive neurons projected to the AVPV and expressed estrogen receptor α, and the neurons were activated by the high E2 treatment. These results suggest that hindbrain ATP-purinergic signaling triggers ovulation via activation of AVPV kisspeptin neurons.SIGNIFICANCE STATEMENT Ovulation disorders, which cause infertility and low pregnancy rates, are a serious problem for humans and livestock. The present study provides evidence that adenosine 5-triphosphate, acting as a neurotransmitter in the brain, stimulates kisspeptin neurons in the anteroventral periventricular nucleus, known as the gonadotropin-releasing hormone surge generator, via purinergic receptors to induce the gonadotropin-releasing hormone/luteinizing hormone surge and ovulation in rats. In addition, histologic analyses indicate that adenosine 5-triphosphate is likely to be originated from the purinergic neurons in the A1 and A2 of the hindbrain. These findings may contribute to new therapeutic controls for hypothalamic ovulation disorders in humans and livestock.


Assuntos
Kisspeptinas , Receptores Purinérgicos P2 , Humanos , Ratos , Feminino , Animais , Kisspeptinas/metabolismo , Estradiol/farmacologia , Estradiol/metabolismo , Hormônio Luteinizante/metabolismo , Hipotálamo Anterior/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Estrogênios/farmacologia , Estrogênios/metabolismo , Neurônios/metabolismo , Ovulação , Rombencéfalo/metabolismo , Trifosfato de Adenosina/metabolismo , Nucleotídeos/metabolismo , Nucleotídeos/farmacologia , Adenosina/metabolismo
9.
Peptides ; 162: 170958, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36682622

RESUMO

Inflammatory diseases attenuate reproductive functions in humans and domestic animals. Lipopolysaccharide (LPS), an endotoxin released by bacteria, is known to disrupt female reproductive functions in various inflammatory diseases. LPS administration has been used to elucidate the impact of pathophysiological activation of the immune system on reproduction. Hypothalamic kisspeptin neurons are the master regulators of mammalian reproduction, mediating direct stimulation of hypothalamic gonadotropin-releasing hormone (GnRH) release and consequent release of gonadotropins, such as luteinizing hormone (LH) and follicle-stimulating hormone from the pituitary. The discovery of kisspeptin neurons in the mammalian hypothalamus has drastically advanced our understanding of how inflammatory stress causes reproductive dysfunction in both humans and domestic animals. Inflammation-induced ovarian dysfunction could be caused, at least partly, by aberrant GnRH and LH secretion, which is regulated by kisspeptin signaling. In this review, we focus on the effects of LPS on hypothalamic kisspeptin neurons to outline the impact of inflammatory stress on neuroendocrine regulation of mammalian reproductive systems. First, we summarize the attenuation of female reproduction by LPS during inflammation and the effects of LPS on ovarian and pituitary function. Second, we outline the inhibitory effects of LPS on pulsatile- and surge-mode GnRH/LH release. Third, we discuss the LPS-responsive hypothalamic-pituitary-adrenal axis and hypothalamic neural systems in terms of the cytokine-mediated pathway and the possible direct action of LPS via its hypothalamic receptors. This article describes the impact of LPS on hypothalamic kisspeptin neurons and the possible mechanisms underlying LPS-mediated disruption of LH pulses/surge via kisspeptin neurons.


Assuntos
Animais Domésticos , Infertilidade , Humanos , Animais , Feminino , Animais Domésticos/metabolismo , Kisspeptinas/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Lipopolissacarídeos , Sistema Hipófise-Suprarrenal/metabolismo , Hipotálamo/metabolismo , Hormônio Liberador de Gonadotropina , Hormônio Luteinizante/metabolismo , Neurônios/metabolismo , Infertilidade/metabolismo , Mamíferos
10.
Endocrinology ; 164(3)2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36592113

RESUMO

Energy availability is an important regulator of reproductive function at various reproductive phases in mammals. Glucoprivation induced by 2-deoxy-D-glucose (2DG), an inhibitor of glucose utilization, as an experimental model of malnutrition suppresses the pulsatile release of GnRH/LH and induces gluconeogenesis. The present study was performed with the aim of examining whether enkephalin-δ-opioid receptor (DOR) signaling mediates the suppression of pulsatile GnRH/LH release and gluconeogenesis during malnutrition. The administration of naltrindole hydrochloride (NTI), a selective DOR antagonist, into the third ventricle blocked the suppression of LH pulses and part of gluconeogenesis induced by IV 2DG administration in ovariectomized rats treated with a negative feedback level of estradiol-17â€…ß (OVX + low E2). The IV 2DG administration significantly increased the number of Penk (enkephalin gene)-positive cells coexpressing fos (neuronal activation marker gene) in the paraventricular nucleus (PVN), but not in the arcuate nucleus (ARC) in OVX + low E2 rats. Furthermore, double in situ hybridization for Penk/Pdyn (dynorphin gene) in the PVN revealed that approximately 35% of the PVN Penk-expressing cells coexpressed Pdyn. Double in situ hybridization for Penk/Crh (corticotropin-releasing hormone gene) in the PVN and Penk/Kiss1 (kisspeptin gene) in the ARC revealed that few Penk-expressing cells coexpressed Crh and Kiss1. Taken together, these results suggest that central enkephalin-DOR signaling mediates the suppression of pulsatile LH release during malnutrition. Moreover, the current study suggests that central enkephalin-DOR signaling is also involved in gluconeogenesis during malnutrition in female rats.


Assuntos
Encefalinas , Gluconeogênese , Receptores Opioides delta , Animais , Feminino , Ratos , Núcleo Arqueado do Hipotálamo/metabolismo , Encefalinas/genética , Encefalinas/metabolismo , Glucose/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Kisspeptinas/metabolismo , Hormônio Luteinizante/metabolismo , Hormônio Luteinizante/farmacologia , Mamíferos/metabolismo , Receptores Opioides delta/genética , Receptores Opioides delta/metabolismo
11.
Neurosci Lett ; 791: 136920, 2022 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-36272558

RESUMO

Follicular development and ovulation are profoundly suppressed during lactation. This suppression is suggested to be due to the suckling-induced inhibition of the kisspeptin gene (the master regulator of reproduction) in the arcuate nucleus (ARC) and subsequent inhibition of pulsatile gonadotropin-releasing hormone (GnRH)/gonadotropin release. The present study examined whether hypothalamic κ-opioid receptor (KOR) or µ-opioid receptor (MOR) signaling mediates the suppression of luteinizing hormone (LH) release induced by suckling stimulus during late lactation in rats. Central administration of a selective KOR antagonist blocked the suppression of LH release on Day 16 of lactation; however, central administration of a selective MOR antagonist failed to block the suppression. The suckling stimulus significantly increased the number of fos (a marker for neural activation)-positive Pdyn (dynorphin gene)-expressing cells in the paraventricular nucleus (PVN) and supraoptic nucleus (SON) but not in the ARC. Taken together, these results suggest that central KOR signaling, but not MOR signaling, at least partly, mediates the suppression of LH release induced by suckling stimulus during late lactation, and PVN and SON Dyn neurons may be involved in the suppression in rats.


Assuntos
Dinorfinas , Receptores Opioides kappa , Feminino , Ratos , Animais , Dinorfinas/metabolismo , Receptores Opioides kappa/metabolismo , Hormônio Luteinizante , Núcleo Arqueado do Hipotálamo/metabolismo , Kisspeptinas/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Lactação/fisiologia , Receptores Opioides
12.
J Reprod Dev ; 68(5): 340-344, 2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36070889

RESUMO

The present study established techniques to induce pseudopregnancy, in vitro oocyte cultures from pronuclear to 2- to 4-cell stages, and embryo transfer in musk shrews, a reflex ovulator. Offspring were subsequently obtained by transferring in vivo-developed or in vitro-cultured embryos. Female musk shrews received human chronic gonadotropin (hCG), with or without mating stimuli, from vasectomized males to produce pseudopregnant recipients. Embryos at the 2- to 4-cell stage were collected 44-48 h after mating. Another set of embryos was collected 26-27 h after mating and then cultured for 20 h from the pronuclear to 2- to 4-cell stages. Subsequently, embryos were transferred into the oviducts of pseudopregnant recipients 24 or 48 h after the induction of pseudopregnancy. Offsprings were successfully obtained from recipients that received hCG 24 h before embryo transfer, regardless of mating stimuli. These techniques may be valuable for producing transgenic musk shrews.


Assuntos
Gonadotropinas , Musaranhos , Animais , Transferência Embrionária/veterinária , Feminino , Humanos , Masculino , Oócitos , Receptores Proteína Tirosina Quinases , Receptores Colinérgicos
13.
Reproduction ; 164(5): 207-219, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36099331

RESUMO

In brief: Uterine inflammatory diseases are a major cause of infertility in humans and domestic animals. The current findings that intrauterine lipopolysaccharide is absorbed in systemic circulation and attenuates ovarian cyclic activities could provide a basis for developing novel treatments to improve fertility. Abstract: Uterine inflammatory diseases are a major cause of infertility in humans and domestic animals. Circulating lipopolysaccharide (LPS), a bacterial endotoxin causing uterine inflammation, reportedly downregulates the hypothalamic-pituitary-gonadal axis to mediate ovarian dysfunction. In contrast, the mechanism whereby intrauterine LPS affects ovarian function has not been fully clarified. This study aimed to elucidate whether uterine exposure to LPS downregulates hypothalamic kisspeptin gene (Kiss1) expression, gonadotropin release, and ovarian function. Uterine inflammation was induced by intrauterine LPS administration to ovary-intact and ovariectomized female rats. As a result, plasma LPS concentrations were substantially higher in control rats until 48 h post injection, and the estrous cyclicity was disrupted with a prolonged diestrous phase. Three days post injection, the number of Graafian follicles and plasma estradiol concentration were reduced in LPS-treated rats, while numbers of Kiss1-expressing cells in the anteroventral periventricular nucleus and arcuate nucleus (ARC) were comparable in ovary-intact rats. Four days post injection, ovulation rate and plasma progesterone levels reduced significantly while gene expression of interleukin1ß and tumor necrosis factor α was upregulated in the ovaries of LPS-treated rats that failed to ovulate. Furthermore, the number of Kiss1-expressing cells in the ARC and pulsatile luteinizing hormone (LH) release were significantly reduced in ovariectomized rats 24 h post injection. In conclusion, these results indicate that intrauterine LPS is absorbed in systemic circulation and attenuates ovarian function. This detrimental effect might be caused, at least partly, by the inhibition of ARC Kiss1 expression and LH pulses along with an induction of ovarian inflammatory response.


Assuntos
Infertilidade , Kisspeptinas , Animais , Núcleo Arqueado do Hipotálamo , Estradiol/farmacologia , Feminino , Infertilidade/metabolismo , Inflamação/metabolismo , Kisspeptinas/metabolismo , Lipopolissacarídeos/toxicidade , Hormônio Luteinizante , Progesterona/metabolismo , Ratos , Fator de Necrose Tumoral alfa/metabolismo
14.
Front Neurosci ; 16: 958377, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36033602

RESUMO

Endogenous opioid peptides have attracted attention as critical neuropeptides in the central mechanism regulating female reproduction ever since the discovery that arcuate dynorphin neurons that coexpress kisspeptin and neurokinin B (NKB), which are also known as kisspeptin/neurokinin B/dynorphin (KNDy) neurons, play a role as a master regulator of pulsatile gonadotropin-releasing hormone (GnRH) release in mammals. In this study, we first focus on the role of dynorphin released by KNDy neurons in the GnRH pulse generation. Second, we provide a historical overview of studies on endogenous opioid peptides. Third, we discuss how endogenous opioid peptides modulate tonic GnRH/gonadotropin release in female mammals as a mediator of inhibitory internal and external cues, such as ovarian steroids, nutritional status, or stress, on reproduction. Then, we discuss the role of endogenous opioid peptides in GnRH surge generation in female mammals.

15.
J Reprod Dev ; 68(3): 190-197, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35249910

RESUMO

Reproductive function is suppressed during lactation owing to the suckling-induced suppression of the kisspeptin gene (Kiss1) expression in the arcuate nucleus (ARC) and subsequent suppression of luteinizing hormone (LH) release. Our previous study revealed that somatostatin (SST) neurons mediate suckling-induced suppression of LH release via SST receptor 2 (SSTR2) in ovariectomized lactating rats during early lactation. This study examined whether central SST-SSTR2 signaling mediates the inhibition of ARC Kiss1 expression and LH release in lactating rats during late lactation and whether the inhibition of glutamatergic neurons, stimulators of LH release, is involved in the suppression of LH release mediated by central SST-SSTR2 signaling in lactating rats. A central injection of the SSTR2 antagonist CYN154806 (CYN) significantly increased ARC Kiss1 expression in lactating rats on day 16 of lactation. Dual in situ hybridization revealed that few ARC Kiss1-positive cells co-expressed Sstr2, and some of the ARC Slc17a6 (a glutamatergic neuronal marker)-positive cells co-expressed Sstr2. Furthermore, almost all ARC Kiss1-positive cells co-expressed Grin1, a subunit of N-methyl-D-aspartate (NMDA) receptors. The numbers of Slc17a6/Sstr2 double-labeled and Slc17a6 single-labeled cells were significantly lower in lactating dams than in non-lactating rats whose pups had been removed after parturition. A central injection of an NMDA antagonist reversed the CYN-induced increase in LH release in lactating rats. Overall, these results suggest that central SST-SSTR2 signaling, at least partly, mediates the suppression of ARC Kiss1 expression and LH release by inhibiting ARC glutamatergic interneurons in lactating rats.


Assuntos
Interneurônios , Kisspeptinas , Lactação , Hormônio Luteinizante , Receptores de Somatostatina , Somatostatina , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Feminino , Interneurônios/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo , Lactação/metabolismo , Hormônio Luteinizante/metabolismo , N-Metilaspartato/metabolismo , Oligopeptídeos/farmacologia , Ratos , Receptores de Somatostatina/antagonistas & inibidores , Receptores de Somatostatina/genética , Receptores de Somatostatina/metabolismo , Somatostatina/genética , Somatostatina/metabolismo
16.
Mol Reprod Dev ; 89(3): 129-132, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35170139

RESUMO

Gene editing in mammalian zygotes enables us to generate genetically modified animals rapidly and efficiently. In this study, we compare multiple gene targeting strategies in rat zygotes by generating a novel knock-in reporter rat line to visualize the expression pattern of transcription factor AP-2 gamma (Tfap2c). The targeting vector is designed to replace the stop codon of Tfap2c with T2A-tdTomato sequence. We show that the combination of electroporation-mediated transduction of CRISPR/Cas9 components with adeno-associated virus-mediated transduction of the targeting vector is the most efficient in generating the targeted rat line. The Tfap2c-T2A-tdTomato fluorescence reflects the endogenous expression pattern of Tfap2c in preimplantation embryo, germline, placenta, and forebrain during rat embryo development. The reporter line generated here will be a reliable resource for identifying and purifying Tfap2c expressing cells in rats, and the gene targeting strategy we used can be widely applied for generating desired animals.


Assuntos
Sistemas CRISPR-Cas , Dependovirus , Animais , Dependovirus/genética , Feminino , Edição de Genes , Técnicas de Introdução de Genes , Marcação de Genes , Proteínas Luminescentes , Mamíferos/genética , Gravidez , Ratos , Zigoto/metabolismo
17.
Endocr J ; 69(7): 797-807, 2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35125377

RESUMO

Prenatal and postnatal biphasic increases in plasma testosterone levels derived from perinatal testes are considered critical for defeminizing/masculinizing the brain mechanism that regulates sexual behavior in male rats. Hypothalamic kisspeptin neurons are indispensable for stimulating GnRH and downstream gonadotropin, as well as the consequent testicular testosterone production/release in adult male rats. However, it is unclear whether kisspeptin is responsible for the increase in plasma testosterone levels in perinatal male rats. The present study aimed to investigate the role of Kiss1/kisspeptin in generating perinatal plasma LH and the consequent testosterone increase in male rats by comparing the plasma testosterone and LH profiles of wild-type (Kiss1+/+) and Kiss1 knockout (Kiss1-/-) male rats. A biphasic pattern of plasma testosterone levels, with peaks in the prenatal and postnatal periods, was found in both Kiss1+/+ and Kiss1-/- male rats. Postnatal plasma testosterone and LH levels were significantly lower in Kiss1-/- male rats than in Kiss1+/+ male rats, whereas the levels in the prenatal embryonic period were comparable between the genotypes. Exogenous kisspeptin challenge significantly increased plasma testosterone and LH levels and the number of c-Fos-immunoreactive GnRH neurons in neonatal Kiss1-/- and Kiss1+/+ male rats. Kiss1 and Gpr54 (kisspeptin receptor gene) were found in the testes of neonatal rats, but kisspeptin treatment failed to stimulate testosterone release in the cultured testes of both genotypes. These findings suggest that postnatal, but not prenatal, testosterone increase in male rats is mainly induced by central kisspeptin-dependent stimulation of GnRH and consequent LH release.


Assuntos
Kisspeptinas , Testosterona , Animais , Feminino , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Kisspeptinas/farmacologia , Hormônio Luteinizante , Masculino , Gravidez , Ratos
18.
Int J Mol Sci ; 24(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36613635

RESUMO

Nuclear receptor subfamily 5 group A member 1 (NR5A1) is expressed in the pituitary gonadotrope and regulates their differentiation. Although several regulatory regions were implicated in Nr5a1 gene expression in the pituitary gland, none of these regions have been verified using mouse models. Furthermore, the molecular functions of NR5A1 in the pituitary gonadotrope have not been fully elucidated. In the present study, we generated mice lacking the pituitary enhancer located in the 6th intron of the Nr5a1 gene. These mice showed pituitary gland-specific disappearance of NR5A1, confirming the functional importance of the enhancer. Enhancer-deleted male mice demonstrated no defects at fetal stages. Meanwhile, androgen production decreased markedly in adult, and postnatal development of reproductive organs, such as the seminal vesicle, prostate, and penis was severely impaired. We further performed transcriptomic analyses of the whole pituitary gland of the enhancer-deleted mice and controls, as well as gonadotropes isolated from Ad4BP-BAC-EGFP mice. These analyses identified several genes showing gonadotrope-specific, NR5A1-dependent expressions, such as Spp1, Tgfbr3l, Grem1, and Nr0b2. These factors are thought to function downstream of NR5A1 and play important roles in reproductive organ development through regulation of pituitary gonadotrope functions.


Assuntos
Gonadotrofos , Hipófise , Sequências Reguladoras de Ácido Nucleico , Fator Esteroidogênico 1 , Animais , Masculino , Camundongos , Gonadotrofos/metabolismo , Íntrons/genética , Hipófise/metabolismo , Fator Esteroidogênico 1/genética
19.
Front Neuroendocrinol ; 64: 100952, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34755641

RESUMO

Reproductive behaviors are sexually differentiated: for example, male rodents show mounting behavior, while females in estrus show lordosis behavior as sex-specific sexual behaviors. Kisspeptin neurons govern reproductive function via direct stimulation of gonadotropin-releasing hormone (GnRH) and subsequent gonadotropin release for gonadal steroidogenesis in mammals. First, we discuss the role of hypothalamic kisspeptin neurons as an indispensable regulator of sexual behavior by stimulating the synthesis of gonadal steroids, which exert "activational effects" on the behavior in adulthood. Second, we discuss the central role of kisspeptin neurons that are directly involved in neural circuits controlling sexual behavior in adulthood. We then focused on the role of perinatal hypothalamic kisspeptin neurons in the induction of perinatal testosterone secretion for its "organizational effects" on masculinization/defeminization of the male brain in rodents during a critical period. We subsequently concluded that kisspeptin neurons are key players in bridging the endocrine system and sexual behavior in mammals.


Assuntos
Hormônio Liberador de Gonadotropina , Kisspeptinas , Animais , Sistema Endócrino , Feminino , Masculino , Mamíferos , Neurônios , Gravidez , Receptores de Kisspeptina-1
20.
Front Neuroendocrinol ; 64: 100968, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34808231

RESUMO

Accumulating findings during the past decades have demonstrated that the hypothalamic arcuate kisspeptin neurons are supposed to be responsible for pulsatile release of gonadotropin-releasing hormone (GnRH) to regulate gametogenesis and steroidogenesis in mammals. The arcuate kisspeptin neurons express neurokinin B (NKB) and dynorphin A (Dyn), thus, the neurons are also referred to as KNDy neurons. In the present article, we mainly focus on the cellular and molecular mechanisms underlying GnRH pulse generation, that is focused on the action of NKB and Dyn and an interaction between KNDy neurons and astrocytes to control GnRH pulse generation. Then, we also discuss the factors that modulate the activity of KNDy neurons and consequent pulsatile GnRH/LH release in mammals.


Assuntos
Núcleo Arqueado do Hipotálamo , Hormônio Liberador de Gonadotropina , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Dinorfinas/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Kisspeptinas/metabolismo , Mamíferos , Neurocinina B/metabolismo , Neurônios/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...